

Seminar Series on Regional Economic Integration

"Assessing the Economy-wide Impacts of RCI Instruments"

> Xiao-guang Zhang Research Manager Australian Productivity Commission 27 May 2014, 10:30am–12:00nn 1650S, ADB Headquarters

Background (1)

- About the Productivity Commission
 - Government's principal review and advisory body on microeconomic policy reform and regulation
- Roles of the Commission
 - Objective analysis for better informed policy decisions
 - Supporting community awareness and policy debate
- Three core design features
 - Independent
 - Transparent
 - Community-wide perspective

Background (2)

- Extensive use of quantitative tools and economic models
 - Particularly, CGE models for analysing economy-wide issues
 - Involved in the development of many CGE models, such as various Australian models (CoPS), SALTER model (the origin of GTAP)

Modelling economic integration

- The degrees economic integration

- Preferential trading area
- Free trade area (NAFTA)
- Custom union
- Common market
- Economic union (EU)
- Economic and monetary union (EU/€)
- Complete economic integration

PC's recent work related to economic integration

- Bilateral and Regional Trade Agreements (2010)
 - Review of bilateral and regional trade agreements
 - Their impacts on Australian trade and economic performance
 - Their impacts on reducing the barriers to the markets of Australia's trading partners
- Strengthening trans-Tasman Economic Relations (2012)
 - Review the 30 years Australia-New Zealand Closer Economic Relations Trade Agreement (ANZCERTA)
 - Achievements so far and areas for reforms
 - The ways forward to closer economic integration

A case study: trans-Tasman economic integration

- History
 - Started with the Australia-New Zealand Closer Economic Relations Trade Agreement (ANZCERTA) in 1983
 - Rapid progress on economic integration after a review in 1988
 - CER has been highly successful in removing explicit restrictions on trade and substantial progress has been made on reducing other barriers to integration, such as labour and capital movements
- Achievements
 - Trade in goods largely liberalized
 - Trade in services is partially liberalized
 - Substantial increase in bilateral investment flows
 - Free movement of people, a key feature
 - Extensive inter-government cooperation

Review of 30 years of CER

- A joint study by the Productivity Commissions of Australia and New Zealand
 - Final report "Strengthening trans-Tasman Economic relations" released in 2012
- Purposes
 - Potential areas of further economic reform and integration
 - Economic impacts and benefits of reform
 - Transition and adjustment costs that could be incurred
 - Identification of reform where joint net benefits are highest
 - The means by which they might be best actioned
 - The likely time paths over which benefits are expected to accrue

Quantifying the effects of economic integration

- Require global CGE modelling
 - A global CGE model (ANZEA), developed for this study
- The ANZEA model
 - Developed on the basis of a simple global model (Zhang, 2013 GTAP conference paper)
 - Use data drawn from GTAP database (version 8)
- A simple model approach
 - CGE models structurally similar and simple
 - Model code can be made simple and transparent

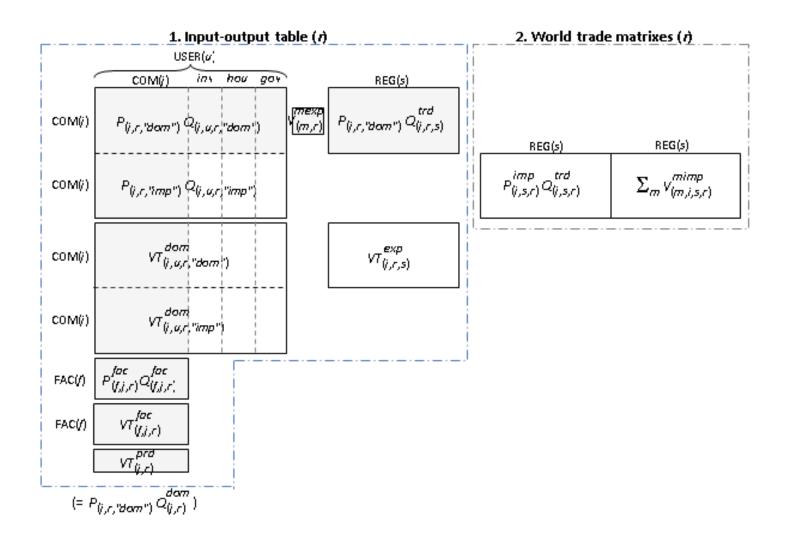
Motivations for simple models

- Diverse policy issues
 - Require different models: national/global or static/dynamic
 - Each used for a wide-range of applications
- Off-the-shelf models
 - Long and complex code: too many variables/equations
 - Designed for multi-purposes
 - Mix model theory and interpretation
 - Costly to modify and adapt to new applications

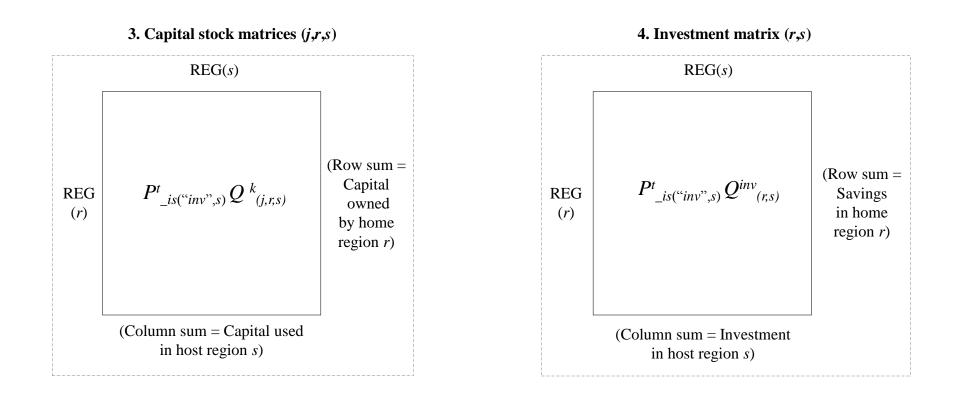
An alternative modelling approach

- The ideal approach
 - A simple model structure with a simple database
 - Easily adaptable to any application
- The meaning of "simple"
 - Not a stylised "toy" model
 - Not with a small-sized database
 - A simple structure for model equations and database
- Benefits from a simple model
 - Transparent and easy to understand the theory
 - Easy to change or modify to incorporate new features
 - Develop application-specific models from a basic model

ANZEA model database structure (1)


- Country/region input-output tables (6 matrixes and 2 vectors)

- Purchases of domestic and imported goods by users
- Indirect tax revenues
- Basic values of non-margin exports
- Export tax revenues
- Purchases of primary factors
- Factor tax revenues
- Basic value of margin exports (vector)
- Production tax revenue (vector)
- World trade data (2 matrixes)
 - Basic values of imports
 - Import margins


ANZEA model database structure (2)

- Bilateral capital and investment data (2 matrixes)
 - Bilateral capital stocks by industry and country
 - Bilateral saving-investment flows by country

Database structure for a representative region (*r*)

Bilateral capital stock and saving-investment matrixes

Equation structure (1)

- A system of 35 equation blocks in 4 sections
 - **Consumption**: region and user demands for goods
 - **Production**: industry outputs and demands for factors
 - Factor supplies: factor market clearing conditions
 - **Income distribution**: allocation of income between final users
- Note that
 - Includes only *core* variables essential for model solution
 - No *reporting* variables

Equation structure (2)

- Demand for imports and domestic goods (eqs.1-9)
 - Three levels of demands for goods by user
 - Associated purchasers' prices derived from their basic prices
- Industrial demands for factors (eqs.10-17)
 - Outputs by industry (CRTS)
 - Demands for factors by industry
 - Basic prices of goods (CRTS)
- Regional supplies of factors (eqs.18-24)
 - Market equilibrium for factors
 - Factor price equalisation for mobile factors

Equation structure (3)

- Final users' expenditure (eqs.25-35)
 - Income derivation
 - Expenditure by final user
 - Trade balance or saving-investment gap

Core variables and equations

- Overall 35 equation blocks
 - 28 define 28 endogenous variables
 - 7 specify solution conditions (eqs.18, 19, 21, 23, 32, 34 and 35)
- 7 variable blocks undefined
 - 3 for factor basic prices $(P_{("land",j,r)}^{f}, W_{(r)}, P_{(j,r,s)}^{k})$
 - 1 for rate of return to home capital $(\mathbf{R}_{is(r)})$
 - 1 for bilateral investment flows $(V^{inv}_{(r,s)})$
 - 1 for world expected rate of return (Re rs)
 - 1 for net foreign investment inflows (Y^{NFI}(r))
- Undefined variables solved from solution conditions
 - Market Clearing Conditions (MCC)
 - Price Equalisation Conditions (PEC)

Undefined variables and MCC/PEC equations

	Undefined variables		MCC/PEC equations	
P ^f ("land",j,r)	Basic price of land	Eq.18	MCC for sectoral land	$Q^{f}_{(``land",j,r)}$
W _(r)	Basic price of labour	Eq.19	MCC for regional labour	$\overline{X}^{lab}(r)$
$R_{js(r)}$	Rate of return to home capital	Eq.21	MCC for home capital	$ar{m{X}}^{k}{}_{(r)}$
$P^{k}_{(j,r,s)}$	Basic price of capital	Eq.23	PEC for rates of return to capital	$R_{(j,r,s)}$
R ^e _rs	World expected rate of return	Eq.32	MCC for global savings	$\sum_{r} V^{sav}{}_{(r)}$
V ^{inv} (r,s)	Bilateral investment flows	Eq.34	PEC for expected rates of return to investment	$R^{e}_{(r,s)}$
Y ^{NFI} (r)	Net foreign investment	Eq.35	MCC for host real investment	$\Sigma_i Q_{s(i,"inv",r)}$

Applications to regional economic integration

- A case study: Australia-New Zealand close economic relations
- 5 scenarios analysed
 - 1. Eliminating Australian and New Zealand tariffs on imports from all sources;
 - 2. Productivity improvements in Australia and New Zealand;
 - 3. Economic expansion in Asia;
 - 4. Migration from New Zealand to Australia;
 - 5. Liberalising trade in services via commercial presence (by reducing barriers to trans-Tasman FDI in services)

1. Removing most-favourednation (MFN) tariffs

Shocks

- Reduce Australia and New Zealand MFN tariffs on all imports to zero
- Gains from
 - More efficient allocation of resources from protected sectors to more competitive sectors
 - Seme inputs and more outputs
- Results
 - GDP \uparrow 0.3% in AU and 0.4% in NZ
 - Output and export \uparrow in mining, food prods and services and \downarrow in TCF and motor vehicle and parts

2. Productivity improvements in Australia and New Zealand (1)

- Shocks
 - An improvement in productivity (specifically, factor augmenting technical change) of 1 percent for all factor inputs in each economy
 - •
- Transmission mechanisms
 - \uparrow competitiveness and output of country A and \downarrow output of B;
 - \uparrow factor income in A and import demand from B, \uparrow output in B;
 - \uparrow factor income in A leads to mobile factor move from B and \downarrow output of B.
- The results: 1% productivity improvement in New Zealand
 - NZ GDP 1.37%, AU GDP -0.01%
 - AU export 0.09%: to NZ 1%, to others -0.15%
 - AU import 0.09%

2. Productivity improvements in Australia and New Zealand (2)

- The results: 1% productivity improvement in Australia
 - AU GDP 1.31%, NZ GDP -0.09%
 - NZ export 0.32%: to NZ 0.38%, to others -0.5%
 - AU import 0.22%

3. The effects of Asian economic growth

- Shocks
 - 10 percent increase in economic activity for all Asian economies
 - Modelled as a uniform expansion in labour and capital (and therefore their corresponding aggregate incomes) of 10 percent in all Asian economies
- Two main effects
 - \uparrow Asia income increases its demand for AU and NZ exports by 3.8% and 3.6%
 - ↓ Asia costs crowds out ANZ exports in world market, AU and NZ exports to non-Asia market decline by 2.1 and 1.5%.
- Net effects
 - AU and NZ exports increase by 1.4 and 0.4%
 - AU and NZ GDP increase by 0.2 and 0.1%

4. Trans-Tasman migration

- Shocks and assumptions
 - 1 percent increase in the supply of New Zealand labour in Australia (about 3000 workers)
 - Keep capital fixed in AU and NZ
- Motivation of migration
 - Expected wage differential net of migration costs
 - Migration reduce wage differentials and increase total output
- Results
 - Employment \uparrow 0.02% in AU and \downarrow 0.14% NZ
 - GNI \uparrow 0.01% in AU and \downarrow 0.08% NZ
 - GNI per worker \downarrow 0.01% in AU and \uparrow 0.06% NZ

5. Reducing barriers to commercial presence in services (1)

- Shocks
 - Empirical estimates of barriers to foreign investment in service industries (CIE 2010)
 - Adjustments for the project: cost-escalating and rent-creating barriers
- Scenarios
 - A reduction in trans-Tasman barriers to FDI in all services industries (except the banking sector)
 - A reduction in trans-Tasman barriers to FDI in communications industries
 - A reduction in the barriers to FDI in communications industries irrespective of where the FDI originates

5. Reducing barriers to commercial presence in services (2)

- Results

- Preferential barriers to services
- Preferential barriers to Communications
- Non-preferential barriers to Communications

Effects on GDP and GNI of eliminating barriers to commercial presence

	Australia	New Zealand
	% changes	% changes
GDP		
Preferential		
Remove trans-Tasman barriers to FDI — all services	-0.01	0.13
Remove trans-Tasman barriers to FDI — communications	-	0.01
Non-preferential		
Remove barriers to FDI all countries — communications	0.11	0.22
GNI		
Preferential		
Remove trans-Tasman barriers to FDI — all services	-	0.07
Remove trans-Tasman barriers to FDI — communications	-	0.01
Non-preferential		
Remove barriers to FDI all countries — communications	0.06	0.10

Sensitivity analysis: closure settings

- Sensitivity to closure settings: test assumptions about capital mobility
 - C1: K stock fixed in host countries
 - C2: K stock fixed in home countries, mobile across host countries
 - C3: Variable global K, fixed investment/capital ratio
 - C4: Variable global K stock, fixed rates of return
- Sensitivity to parameter values
 - Amington substitution
 - Factor substitution
 - Capital substitution
 - •
- Importance of the "range"

Concluding remarks

- CGE models are suitable for a wide range of policy options for regional economic integration
- A simple model structure is adaptable to many applications of regional integration

Infrastructure reform and income distribution: A case study of Australia

Xiao-guang Zhang

Productivity Commission, Australia

Seminar, OREI, ADB, May 27, 2014, Manila

Outline

- Back ground
 - The 1990 Structural changes in Australian infrastructure industries in the 1990s
 - Effects on production and consumption
- Analytical framework: a two-model approach
 - A regional CGE model of the Australian economy
 - A micro-simulation model based in the household expenditure survey data
- An example of the results: electricity industry
 - CGE results
 - Micro-simulation results

Modelling income distribution impacts

 "Distributional effects of changes in Australian infrastructure industries during the 1990s", with G. Verikios, Staff Working Paper, 2008, Productivity Commission.

- Infrastructural industries

- Electricity
- Gas
- Ports and rall freight
- Telecommunications
- Urban transport
- Water and sewerage

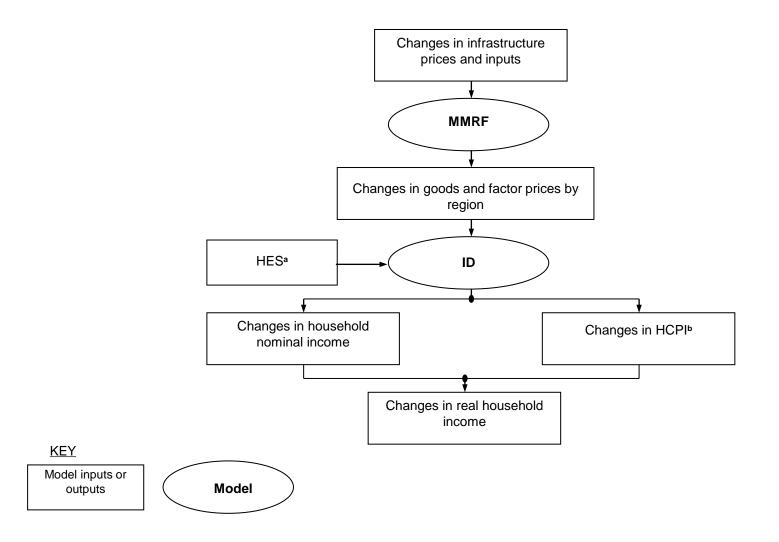
Back ground (1)

- During the 1990s, many changes occurred in these industries
 - Management structure
 - Ownership structure
 - Taxation treatment
 - Technology and management practices
- Expected effects on production
 - Costs, prices
 - Productivity
 - Outputs, employment
 - Factor income

Back ground (2)

- Expected effects on households

- Household nominal income
- Household expenditure
- Household real income


Aim of the study

- Focus on
 - The effects on the distribution of real income between households at the regional level

Analytical framework: a twomodel approach

- A regional CGE model of the Australian economy (MMRF)
 - 8 states/territories
 - Each has one aggregate household
 - 54 goods/industries
 - 8 labour occupations
 - Early 1990s data
- A micro-simulation model based on the household expenditure survey data (ID model)
 - the 1993-94 Household Expenditure Survey (HES)
 - Expenditure data: goods and services > 700
 - Income source data: 8 labour occupations, many non-labour incomes and income tax, transfer payments
 - Sample size > 8000 households

MMRF-ID framework

Use of the MMRF-ID framework

- Changes in an infrastructure industry are introduced in the MMRF model to simulate the effects on
 - Goods prices
 - Factor prices
- The CGE effects are used to shock the equivalent variables in the ID model to derive changes in each household's
 - Nominal income: factor price index
 - Nominal expenditure: household CPI of HCPI
 - => Change in household real income = change in household factor price index change in HCPI
 - Compare changes in real income distribution

Linking the micro-sim model to the CGE model

- Linking household income sources with MMRF factor incomes
- Linking household expenditure items with MMRF consumption goods

Sources of household income in MMRF and ID

MMRF model	ID model (as defined in HES)
Wages for eight	Wages for Managers and administrators; Professionals; Para-Professionals;
occupations (same as	Tradespersons; Clerks; Salespersons and personal service workers; Plant
those in ID)	and machine operators and drivers; Labourers and related workers
Non-labour (capital and	Interest; Investment; Property rent; Superannuation; Business; Workers
land) private income	compensation; Accident compensation; Maintenance; Other regular sources;
sources	Private scholarship; Government scholarship; Overseas pensions
Unemployment benefits (Commonwealth)	Unemployment benefits
Other government	Sickness benefits; Family allowance; Veterans' pensions; Age pensions;
benefits	Widows' pensions; Disabled pensions; Supporting parenting benefits; Wives'
(Commonwealth and	pensions; Other Australian government benefits; AUSTUDY support; Carers'
State)	pensions; Other overseas government benefits
Direct taxes	Direct taxes

Important features of the ID database

- Household expenditure patterns
- Household income source patterns
- Provide a simple but powerful basis for result interpretation: why a set of the same price changes could lead to a diverse changes in household incomes.

Composition of gross income and direct taxes by decile (%)

Income decile	Labour income	Non-labour income	Government benefits	Direct taxes
Lowest	32.7	-9.1	76.4	3.0
Second	41.7	9.9	48.5	6.0
Third	33.8	14.2	52.0	6.4
Fourth	50.1	10.9	39.0	9.3
Fifth	63.3	18.1	18.6	14.0
Sixth	73.7	15.6	10.7	16.5
Seventh	77.1	15.8	7.1	18.5
Eighth	84.2	13.3	2.5	20.2
Ninth	86.3	12.6	1.2	22.5
Highest	80.2	19.5	0.3	29.1

Shares of occupational wages in labour income by decile (%)

Occupation	1st	2nd	3rd	4th	5th	6th	7th	8th	9th	10th
Managers & administrators	14.2	8.0	10.8	10.0	10.7	9.6	12.2	13.1	14.4	25.7
Professionals	8.2	9.9	13.1	11.8	12.8	14.3	15.8	15.8	19.4	33.1
Para-professionals	6.8	9.9	8.0	5.5	12.6	7.9	8.1	9.4	9.0	8.9
Tradespersons	11.9	19.5	19.8	18.6	20.3	16.7	12.6	14.3	12.7	6.0
Clerks	9.8	10.5	16.1	14.2	14.2	15.0	19.0	17.2	18.2	12.4
Salespersons & personal service workers	13.8	12.5	12.7	13.2	9.8	13.0	12.1	12.1	11.7	6.9
Plant & machine operators, & drivers	12.8	9.8	5.0	9.7	5.6	10.0	7.7	8.4	7.6	4.7
Labourers & related workers	22.4	19.8	14.7	17.0	13.9	13.4	12.6	9.7	7.0	2.3

Shares of infrastructure services and capital expenditure in total household expenditure (%)

Income decile	Electricity	Gas ^{Po}	orts & rail freight	Telecomm- unications	Urban transport	Water & sewerage	Capital spending
Lowest	2.4	0.7	0.4	2.6	1.0	0.8	9.9
Second	2.3	0.6	0.3	2.3	1.0	0.9	12.9
Third	2.4	0.7	0.4	2.6	1.2	1.1	11.2
Fourth	2.0	0.6	0.3	2.3	1.0	1.0	18.8
Fifth	1.7	0.5	0.3	1.9	0.9	0.9	21.9
Sixth	1.5	0.5	0.4	1.7	0.8	0.8	24.8
Seventh	1.4	0.5	0.5	1.6	0.8	0.7	26.7
Eighth	1.2	0.4	0.5	1.4	1.1	0.6	29.9
Ninth	1.1	0.4	0.5	1.3	0.9	0.6	35.4
Highest	0.8	0.3	0.3	1.0	0.6	0.5	44.1
Average	1.5	0.4	0.4	1.7	0.9	0.7	27.7

Interpretation of the results

- Economy-wide results (CGE model)
 - Mechanism of transmission from shocks to final changes in goods and factor prices
 - Can be explained by CGE model's theoretical structure
 - First round effects: ↑ labour productivity in an infr-ind. → ↓ its price and ↑ output → ↓ the costs and ↑ outputs of downstream inds.
 - \downarrow employ in the infr-ind. $\rightarrow \downarrow$ its wage and \uparrow returns to other factors
 - Second-round effects: \uparrow household income $\rightarrow \uparrow$ demands for all goods \rightarrow goods price changes again
- Subsequent changes in household incomes (micro-sim model)
 - Can be explained by each household's unique consumption and income source patterns

An example: the electricity industry

Estimated shocks

- Employment (per unit of output)
- Business prices (relative to CPI)
- Household prices (relative to CPI)
- Economy-wide results (MMRF model)
 - Industry effects
 - Income effects
 - Price effects
- Household effects (ID model)
 - Nominal household incomes
 - Household specific CPI
 - Real household income

Estimated changes in electricity industry variables, 1989-90 to 1999-2000 (%)

Variable	NSW	Vic	Qld	SA	WA	Tas	NT	ACT
Employment per unit of output	-65.1	-80.0	-46.8	-69.5	-59.3	-59.4	-54.1	-45.3
Business prices (real)	-35.6	-22.8	-10.3	-29.6	-22.1	-9.1	-18.9	-26.7
Household prices (real)	-11.0	8.5	-16.3	6.5	-12.9	6.5	-8.1	-2.3

Electricity industry effects due to changes in unit output employment and real prices, 1989-90 to 1999-2000 (%)

Variable	NSW	Vic	Qld	SA	WA	Tas	NT	ACT
Labour productivity	378.1	1330.5	183.3	445.8	310.4	332.7	204.7	122.7
Other inputs productivity	13.5	-8.5	1.9	3.0	4.1	-8.3	-4.3	5.3
Average productivity a	29.5	10.6	9.6	11.5	18.2	1.8	15.2	19.9
Supply price	-31.5	-15.2	-11.4	-22.5	-20.5	-4.6	-17.1	-22.3

Economywide effects of changes in the electricity industry, 1989-90 to 1999-2000 (%)

Variable	NSW	Vic	Qld	SA	WA	Tas	NT	ACT	National
CPI	-0.3	0.7	0.1	0.5	0.1	0.7	0.3	0.1	0.1
Occupational wage rates:									
Managers & administrators	1.2	2.3	1.7	2.1	1.7	2.4	1.9	1.7	1.7
Professionals	-3.5	-2.5	-3.0	-2.6	-3.1	-2.4	-2.8	-3.0	-3.0
Para-professionals	0.1	1.1	0.6	1.0	0.5	1.2	0.8	0.6	0.6
Tradespersons	-2.8	-1.8	-2.4	-2.0	-2.4	-1.8	-2.2	-2.4	-2.4
Clerks	2.3	3.4	2.8	3.2	2.7	3.4	3.0	2.8	2.8
Salespersons & personal service workers	1.9	2.9	2.4	2.7	2.3	3.0	2.5	2.3	2.3
Plant & machine operators, and drivers	3.1	4.1	3.6	3.9	3.5	4.2	3.7	3.5	3.5
Labourers & related workers	1.6	2.6	2.1	2.5	2.0	2.7	2.3	2.1	2.1
Average wage rate	0.2	1.2	0.7	1.0	0.6	1.3	0.7	0.6	0.7
Returns to capital a	0.2	0.8	0.5	0.7	0.5	0.7	0.6	0.5	nc
Unemployment benefit indexation	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Other government benefit indexation	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
Direct tax rate	-0.5	-0.8	-0.2	-0.8	-0.7	-0.7	-1.0	-0.5	nc

Simulated effects on nominal household income of changes in the electricity industry (%)

Income decile	NSW	Vic	Qld	SA	WA	Tas	NT	ACT	National
Lowest	0.60	1.08	0.80	1.47	1.66	0.95	-0.50	0.88	0.92
Second	0.48	1.28	0.49	0.49	0.94	1.14	1.33	0.74	0.76
Third	0.57	0.90	0.62	0.67	0.33	0.90	-0.31	1.03	0.64
Fourth	0.60	1.12	0.80	0.85	0.51	0.98	2.59	1.56	0.86
Fifth	0.23	1.09	0.72	1.65	0.60	0.97	-0.23	1.44	0.73
Sixth	0.49	1.35	0.96	1.51	0.73	1.38	1.86	1.03	0.92
Seventh	0.60	1.60	1.22	1.23	0.87	1.66	1.93	0.74	1.07
Eighth	0.49	1.87	0.93	1.39	0.59	2.56	0.18	0.71	1.03
Ninth	0.26	1.56	0.91	1.91	1.01	2.16	1.16	0.51	0.97
Highest	0.03	0.99	0.40	1.18	0.47	1.45	-0.85	0.22	0.50
All deciles	0.37	1.33	0.79	1.32	0.71	1.60	0.66	0.80	0.83

HCPI effects of changes in the electricity industry, 1989-90 to 1999-2000 (%)

Income decile	NSW	Vic	Qld	SA	WA	Tas	NT	ACT	Nationa
Lowest	-0.43	0.85	0.09	0.63	0.02	0.85	0.29	0.09	0.16
Second	-0.44	0.87	0.10	0.68	-0.05	0.87	0.46	0.09	0.15
Third	-0.46	0.87	0.09	0.74	-	0.84	0.23	0.12	0.15
Fourth	-0.41	0.77	0.10	0.65	0.06	0.89	0.27	0.14	0.17
Fifth	-0.38	0.73	0.13	0.54	0.06	0.80	0.33	0.13	0.15
Sixth	-0.34	0.68	0.12	0.46	0.07	0.81	0.34	0.12	0.12
Seventh	-0.32	0.68	0.15	0.49	0.06	0.74	0.28	0.10	0.13
Eighth	-0.29	0.62	0.18	0.50	0.10	0.70	0.27	0.12	0.14
Ninth	-0.29	0.59	0.20	0.43	0.10	0.70	0.26	0.11	0.14
Highest	-0.27	0.49	0.16	0.39	0.11	0.63	0.29	0.12	0.12
All deciles	-0.34	0.66	0.14	0.50	0.07	0.75	0.30	0.12	0.14

Real household income effects due to changes in the electricity industry, 1989-90 to 1999-2000 (%)

Income decile	NSW	Vic	Qld	SA	WA	Tas	NT	ACT	National
Lowest	1.03	0.23	0.71	0.84	1.64	0.09	-0.79	0.79	0.76
Second	0.92	0.40	0.39	-0.19	1.00	0.27	0.87	0.65	0.61
Third	1.04	0.03	0.53	-0.06	0.33	0.05	-0.54	0.91	0.49
Fourth	1.01	0.35	0.70	0.20	0.45	0.09	2.31	1.42	0.69
Fifth	0.61	0.36	0.59	1.10	0.55	0.17	-0.56	1.31	0.58
Sixth	0.83	0.67	0.84	1.04	0.66	0.57	1.51	0.91	0.80
Seventh	0.92	0.91	1.06	0.73	0.82	0.91	1.64	0.64	0.93
Eighth	0.78	1.24	0.74	0.89	0.48	1.84	-0.09	0.59	0.89
Ninth	0.55	0.97	0.70	1.47	0.91	1.45	0.89	0.39	0.82
Highest	0.30	0.50	0.25	0.78	0.36	0.82	-1.13	0.10	0.38
All deciles	0.71	0.66	0.64	0.82	0.65	0.84	0.35	0.69	0.69
Gini coefficient	-0.15	0.11	-0.05	0.18	-0.05	0.26	-0.25	-0.22	-0.02

Strengths and limitations of this approach

- Strengths

- Structurally simple
- Straight forward interpretation
- Flexible
- Limitations
 - No feedback effects in the micro-simulation model

An alternative approach

- Incorporate micro-sim model with CGE model
 - Internally consistent
 - Feedback effects
- Require more work on CGE model and database

Contacts

Email xzhang@pc.gov.au

Website www.pc.gov.au